Name

Second Exam MTH 221, Fall 2011

Ayman Badawi

QUESTION 1. (Circle the correct answer, each = 2.5, total 17.5)

. ID

- (i) One of the following set is equal to R²:
 a) Span{(2,1), (6,3)}
 b) {(3,0), (2,4)}
 c) {(a+2b, -4b) | a, b ∈ R}
 d) Span{(4,6)}
- (ii) One of the following is a subspace of R^3 :

a) $\{(a, 2a, b^2) \mid a, b \in R\}$. b) $\{(a + b, 0, 2 + b) \mid a, b \in R\}$ c) $\{(3, 0, a + b) \mid a, b \in R\}$ d) $\{(a, 3b - a, b) \mid a, b \in R\}$

(iii) Let A be a particular matrix 3×4 such that $N(A) = \{(a_3, a_3 + a_4, a_3, a_4) \mid a_3, a_4 \in R\}$. Then one of the following statement is true:

a) If the system of linear equations $AX = \begin{bmatrix} 2\\ 3\\ 4.2 \end{bmatrix}$ has a solution, then the solution is unique. b) There must be a point $B = (b_1, b_2, b_3) \in \mathbb{R}^3$ such that the system $AX = \begin{bmatrix} b_1\\ b_2\\ b_3 \end{bmatrix}$ has no solutions. c) The system $AX = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$

has infinitely many solutions. d) None of the previous statements is correct.

(iv) Let A, N(A) as in the previous question. Let B be a matrix 4×3 such that Rank(B) = 2 and $AB = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Then one of the following is a possibility for *B*:

a) $\begin{bmatrix} 1 & 3 & 0 \\ 1 & 3 & 2 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. b) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ d) It is possible that *B* be as in (a) and as in (b) and

as in (c). e) There is no way that we can determine a possibility for B since A is not completely determined.

(v) Let
$$A, N(A)$$
 as in (iii). Given that $A \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -1\\-1\\0\\0 \end{bmatrix}$. Then one of the following must be true:
a) $A \begin{bmatrix} 1\\3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -1\\-1\\0\\0\\0 \end{bmatrix}$ b) $A \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} -1\\-1\\0\\0\\0 \end{bmatrix}$ c) $A \begin{bmatrix} 1\\0\\1\\0\\0 \end{bmatrix} = \begin{bmatrix} -1\\-1\\0\\0\\0 \end{bmatrix}$ d) The solution to $AX = \begin{bmatrix} -1\\-1\\0\\0\\0 \end{bmatrix}$ is unique and hence $x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$ is the only solution to the system $AX = \begin{bmatrix} -1\\-1\\0\\0\\0 \end{bmatrix}$

- (vi) Let $F = Span\{(a+c) + (a+c)x + (a+b+2c)x^2 \mid a, b, c \in R\}$ be a subspace of P_3 . Then dim(F) = a) 2 b) 3 c)1 d) Cannot be determined
- (vii) Let $F = \{(a + c, a + c, a + b + 2c) \mid a, b, c \in R\}$. Then $F = span\{(1, 1, 1), (0, 0, 6)\}$ b) $Span\{(2, 2, 2), (-1, -1, -1)\}$ c) Span $\{(1, 1, 2)\}$ d) R^3

QUESTION 2. (Circle the correct answer, each = 2.5, total = 22.5)

(i) Let
$$F = \left\{ \begin{bmatrix} a-b & 0\\ -a+b & 2a-2b \end{bmatrix} \mid a, b \in R \right\}$$
. Then $F =$
a) $Span\left\{ \begin{bmatrix} 1 & 0\\ 1 & 2 \end{bmatrix} \right\}$ b) $Span\left\{ \begin{bmatrix} 4 & 0\\ -4 & 8 \end{bmatrix} \right\}$ c) $Span\left\{ \begin{bmatrix} 1 & 0\\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0\\ 1 & -2 \end{bmatrix} \right\}$ d) None of the previous statements

- (ii) Let F as above and D ∈ F such that D is not the zero matrix. Then Column space of D =
 a) R² b) R⁴ c) Span{(1,-1)} d) Span{(1,0)} e) Since different D has different columns, column space of D cannot be determined.
- (iii) Given A is a 4 × 4 such that A is row-equivalent to $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$. Then N(A) =a) $\{(x_2 + x_3, x_2, x_3, 0) \mid x_2, x_3 \in R\}$ b) $Span\{(1, 1, 1, 1), (0, 0, 0, 1)\}$ c) $Span\{(-1, 1, 0, 0), (-1, 0, 1, 0)\}$.
- (iv) Let A as in the previous question. Then one of the following points DOES NOT belong to the row space of A a) (-1, -1, -1, 5) b) (1, 1, 1, 0) c) (1, 1, -1, 4) d) (-1, -1, -1, 0)

(v) Let A as in question (ii). Given
$$A \begin{bmatrix} 0\\0\\2\\6 \end{bmatrix} = \begin{bmatrix} 2\\0\\2\\6 \end{bmatrix}$$
 and $A \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\2\\4 \end{bmatrix}$. Then the column space of A is

a) $span\{(0,0,0,2), (-1,0,0,1)\}$ b) $Span\{(1,0,0,0), (1,1,2,4)\}$ c) $Span\{(1,0,0,0), (0,1,0,0)\}$ d) $span\{(1,-1,-1,-1), (1,0,1,3)\}$ e) More information is needed to find Column space of A.

- (vi) Let $F = \{f(x) \in P_3 \mid f(-1) = 0\}$. Then F is a subspace of P_3 . Hence F = a) $Span\{6 + 6x, x^2 + 1\}$ b) $span\{x + x^2\}$ c) $Span\{x + x^2, 2x + x^2\}$ d) $Span\{x + 1, x^2 + 2x + 1\}$
- (vii) One of the following is a basis for R^4

d) $\{(-x_2 + x_3, x_2, x_3, 0) \mid x_2, x_3 \in R\}$

a) $\{(4, 6, 0, 2), (-2, 8, 2, 2), (-4, -6, 3, 7), (-2, -3, 0, 10)\}$ b) $\{(1, 0, 0, 0), (1, 1, 0, 1), (0, 1, 0, 1), (0, 0, 0, 4)\}$ C) Any 4 points in \mathbb{R}^4 is a basis for \mathbb{R}^4 . d) (a) and (b) and (c) will do

- (viii) One of the following points belong to $Span\{(1, 1, 1), (-1, 1, 1), (3, -1, -1)\}$ a) $(4, 2\pi, 2\pi^+2)$ b) (0, 2, 3) c) $(1, \pi, -\pi)$ d) (1, 6, 6)
- (ix) Let A be a 3×3 such that $(0,4,0) \in N(A)$, $A \begin{bmatrix} 1\\8\\0 \end{bmatrix} = \begin{bmatrix} 4\\12\\10 \end{bmatrix}$, and $A \begin{bmatrix} 0\\7\\1 \end{bmatrix} = \begin{bmatrix} 4\\12\\10 \end{bmatrix}$. Then N(A) =

a) $Span\{0,1,0\}$ b) $Span\{(0,4,0), (1,8,0), (0,7,1)\}$ c) $Span\{(0,4,0), (1,15,1)\}$ d) $span\{(0,1,0), (1,1,-1)\}$ e) More information is needed

QUESTION 3. (JUST WRITE T OR F, Total = 10 points)

(i) Let $F = \{A \in \mathbb{R}^{2 \times 2} \mid det(A) \le 1\}$. Then F is a subspace of $\mathbb{R}^{2 \times 2}$

(ii) The span of any 5 polynomials in P_5 is equal to P_5

(iii) $F = \{g(x) \in P_4 \mid f(0) = 0 \text{ or } f(1) = 0\}$ is a subspace of P_4

(iv) $D = \{f(x) \in P_3 | f(0) = 1\}$ is a subspace of P_3 .

- (v) It is possible to have 7 matrices in $R^{2\times 3}$ that are independent.
- (vi) Every 6 points in R^5 are dependent
- (vii) It is possible that the span of 6 points in R^3 is equal to R^3
- (viii) If A is 3×3 and the system $AX = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ has infinitely many solution, then it is possible that Rank(A) = 1

(ix) If A is a 3 × 5 matrix such that for every $B = (b_1, b_2, b_3) \in R^3$ the system $AX = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ has a solution, then $\dim(N(A)) = 2$.

(x) $F = \{(b, -2a, 3+b) \mid a, b \in R\}$ is a subspace of R^3

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com